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SUMMARY

A numerical method was developed for flows involving an interface between a homogenous fluid and
a porous medium. The numerical method is based on the finite volume method with body-fitted and
multi-block grids. A generalized model, which includes Brinkman term, Forcheimmer term and non-linear
convective term, was used to govern the flow in the porous medium region. At its interface, a shear
stress jump that includes the inertial effect was imposed, together with a continuity of normal stress.
Furthermore, the effect of the jump condition on the diffusive flux was considered, additional to that on
the convective part which has been usually considered. Numerical results of three flow configurations are
presented. The method is suitable for coupled problems with regions of homogeneous fluid and porous
medium, which have complex geometries. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of flow systems which compose of a porous medium and a homogenous fluid has
attracted much attention since they occur in a wide range of the industrial and environmental
applications. Examples of practical applications are: flow past porous scaffolds in bioreactors,
drying process, electronic cooling, ceramic processing, overland flow during rainfall and ground-
water pollution. Two different approaches, the single-domain approach [1, 2] and the two-domain
approach [3, 4], are usually used to solve this type of problems.

In the single-domain approach, the composite region is considered as a continuum and one
set of general governing equations is applied for the whole domain. The explicit formulation of
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Table I. Interface boundary conditions between porous medium and homogenous fluid domains.

Model Velocity Velocity gradient Reference

1
�ux
�y

∣∣∣∣
fluid

= �√
K

(ux |interface − 〈u〉∞) [7]

2 〈u〉x |porous = ux |fluid �〈u〉x
�y

∣∣∣∣
porous

= �ux
�y

∣∣∣∣
fluid

[8, 9]

3 〈u〉x |porous = ux |fluid �eff
�〈u〉x

�y

∣∣∣
porous

= � �ux
�y

∣∣∣
fluid

[10]

4 〈u〉x |porous = ux |fluid �
�

�〈u〉x
�y

∣∣∣∣
porous

− �
�ux
�y

∣∣∣∣
fluid

= �
�√
K
ux

∣∣∣∣
interface

[11, 12]

5 〈u〉x |porous = ux |fluid

�
�

�〈u〉x
�y

∣∣∣∣
porous

− �
�ux
�y

∣∣∣∣
fluid

= �
�√
K
ux

∣∣∣∣
interface

+ �1�u
2
x |interface

[13]

boundary conditions is avoided at the interface and the transitions of the properties between the
fluid and porous medium are achieved by certain artefacts [5]. Although this method is relatively
easier to implement, the flow behaviour at the interface may not be simulated properly, depending
on how the code is structured [6].

In the two-domain approach, two sets of governing equations are applied to describe the flow
in the two regions and additional boundary conditions are applied at the interface to close the
two sets of equations. This method is more reliable since it tries to simulate the flow behaviour
at the interface. Hence, in the present study, the two-domain approach, with the implementation
of the interface boundary conditions, is considered. A list of proposed boundary conditions at the
porous–fluid interface is summarized in Table I.

One of the several early studies on the interface boundary conditions is that by Beavers and
Joseph [7]. In their approach, the flows in a homogenous fluid and a porous medium are governed
by the Navier–Stokes and Darcy equations, respectively. A semi-empirical slip boundary condition
was proposed at the interface, because the flows in the different regions are governed by the
corresponding partial differential equations of different orders. To make the governing equations
of the same order, Neale and Nader [8] introduced a Brinkman term in the Darcy equation for the
porous medium; and thus, proposed continuous boundary conditions in both stress and velocity.
By matching both velocity and stress, Vafai and Kim [9] provided an exact solution for the fluid
flow at the interface, which includes the inertial and boundary effects. In an alternative model
[10], the effective viscosity was used in the formulation of the continuous stress condition at the
interface.

A stress jump condition at the interface was deduced by Ochoa-Tapia and Whitaker [11, 12]
based on the non-local form of the volume-averaged method. Based on the Forchheimer equation
with the Brinkman correction and the Navier–Stokes Equation, Ochoa-Tapia and Whitaker [13]
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developed another stress jump condition which includes the inertial effects. Two coefficients appear
in this jump condition: one is associated with an excess viscous stress and the other is related to
an excess inertial stress.

Numerical solutions for the coupled viscous and porous flows have been attempted by many
researchers [2–4, 14, 15]. Jue [2] simulated vortex shedding behind a porous square cylinder by
finite element method. In his study, a general non-Darcy porous media model was applied to
describe the flows both inside and outside the cylinder. A harmonic mean was used to treat the
sudden change between the fluid and porous medium. Costa et al. [4] proposed a control-volume
finite element method to simulate the problems of coupled viscous and porous flows. A continuity
of both velocity and stress at the interface was assumed and no special or additional procedure
was needed to impose the interfacial boundary conditions. Betchen et al. [15] developed a finite
volume model, also based on continuity of both velocity and stress, but special attention was given
to the pressure–velocity coupling at the interface.

Different types of interfacial conditions between a porous medium and a homogenous fluid have
been proposed; and found to have a pronounced effect on the velocity field as shown by Alazmi
and Vafai [16]. Although the one-domain approach, or a continuity of both velocity and stress, is
easier to implement, the stress jump conditions have been adopted by researchers.

The implementation of the numerical methodology on the stress jump condition based on
Ochoa-Tapia and Whitaker [11, 12] can be found in the work of Silva and de Lemos [3]. Although
they proposed that their treatment could be used in a complex geometry, their results were based
on finite volume method in an orthogonal Cartesian coordinate system and for the case of fully
developed flow. In their study, only the jump in shear stress was included and no special treatment
on velocity derivatives was mentioned. However, for flow in general, it is needed to consider how
to formulate the velocity derivatives at the interface. Also, for the two-dimensional problem, the
normal stress condition is needed to close the sets of equations.

The objective of the present study was to develop a numerical method based on finite vol-
ume method with a collocated variable arrangement to treat the stress jump condition given by
Ochoa-Tapia and Whitaker [13], which includes the inertial effects. As the interface naturally
divides the whole domain into different parts and its location is known a priori, the multi-block
method is used. By combining body-fitted and multi-block grids, the present method is effective
for the coupled problem in the homogeneous fluid and porous medium regions with complex
geometries.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Considering steady, laminar flow of an incompressible, viscous fluid, the governing equations for
a homogenous fluid region, using vector form, can be written as

∇ · u= 0 (1)

∇ · (�uu) =−∇ p + �∇2u (2)

where p is the pressure, � is the mass density of the fluid and � is the fluid dynamic viscosity.
The porous medium is considered to be rigid, homogeneous and isotropic; and saturated with

the same single-phase fluid as that in the homogenous fluid region. Considering viscous and
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inertial effects, the governing equations for porous region based on Darcy–Brinkman–Forchheimer
extended model can be expressed as [17, 18]

∇ · u= 0 (3)

∇ ·
(�uu

�

)
︸ ︷︷ ︸

Convective Term

=− ∇(�p∗)︸ ︷︷ ︸
Pressure Term

+ �∇2u︸ ︷︷ ︸
Brinkman Term

− ��

K
u︸︷︷︸

Darcy Term

− ��CF|u|√
K

u︸ ︷︷ ︸
Forchheimer Term

(4)

where u is the local average velocity vector (Darcy velocity), p∗ is the intrinsic average pressure,
� is the fluid dynamic viscosity, � is the porosity, K is the permeability and CF is Forchheimer
coefficient. Note that throughout the paper, viscosity means dynamic viscosity of the fluid but not
the effective (Brinkman) viscosity. The ‘*’ denotes the intrinsic average. The local average and
intrinsic average can be linked by the Dupuit–Forchheimer relationship, for example, p= �p∗.

At the interface between the homogeneous fluid and porous medium regions, additional boundary
conditions must be applied to couple the flows in the two regions. In the present study, the stress
jump condition [13] is applied

�

�

�ut
�n

∣∣∣∣
porous

− �
�ut
�n

∣∣∣∣
fluid

= �
�√
K
ut

∣∣∣∣
interface

+ �1�u
2
t (5)

where in the porous medium region, ut is the Darcy velocity component parallel to the interface
aligned with the direction t and normal to the direction n while in the homogenous fluid region ut
is the fluid velocity component parallel to the interface; � and �1 are adjustable parameters which
account for the stress jump at the interface.

Ochoa-Tapia and Whitaker [13] derived analytical expressions for parameters � and �1 which
indicate their dependence on permeability and porosity. They concluded that these two parameters
are both of order one. Ochoa-Tapia and Whitaker [12] experimentally determined that � varies from
+0.7 to −1.0 for different materials with permeability varying from 15× 10−6 to 127× 10−6 in2

and average pore size from 0.016 to 0.045 in. There is presently no experimental data for �1. It is
not known how much the two parameters may change from one type of interface to another; and it
is assumed in this study that the changes should be in the same range as those for different types of
materials. Thus, for the purpose of demonstrating the implementation of the present formulation,
both � and �1 are varied in the range −0.7 to +0.7 in the present study.

In addition to Equation (5), the continuity of velocity and normal stress prevailing at the interface
is given by

u|fluid =u|porous = vinterface (6)

�

�

�un
�n

∣∣∣∣
porous

− �
�un
�n

∣∣∣∣
fluid

= 0 (7)

where in the porous medium region, un is the Darcy velocity component normal to the interface
and in the homogenous fluid region, un is the fluid velocity component normal to the interface. By
combining with the appropriate boundary conditions of the composite region, Equations (1)–(7)
can be used to simulate the flow in a system composed of a porous medium and a homogenous
fluid.
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3. DISCRETIZATION

3.1. Homogenous fluid region

A typical control volume is shown in Figure 1. For a general dependent variable �, a final discrete
form over the control volume can be written as

Fe + Fw + Fn + Fs = S (8)

where Fe, Fw, Fn and Fs are the overall fluxes (including both convection and diffusion) of �
at faces e, w, n, s, which denote east, west, north, and south of the control volume and S is the
source term. The detailed numerical methodology for obtaining the convective flux (Fc

e , Fc
w, Fc

n
and Fc

s ) and diffusive flux (Fd
e , Fd

w, Fd
n and Fd

s ) are given by Ferziger and Perić [19].
With the midpoint rule approximation, the convective flux at face east can be calculated as

Fc
e =

∫
Se

��u · n dS ≈me�e (9)

where me is the mass flux cross the surface e, Se is the surface area of face e and �e is the value
of � at the centre of the cell face. me and Se can be calculated as

me = �e(S
xu + Syv)e, Se =

√
(Sxe )2 + (Sye )2 (10)

where u and v are the velocity components in the x and y directions, Sx and Sy are the surface
vector components.

To avoid the non-orthogonal effect, the midpoint rule with the deferred correction term [20]
applied to the integrated diffusive flux is given by

Fd
e = �e

(
��

�n

)
e
Se = �eSe

(
��

��

)
e
+ �eSe

[(
��

�n

)
e
−
(

��

��

)
e

]old
(11)

′

Figure 1. A typical two-dimensional control volume.
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If an implicit flux approximation of the term (��/��)e is applied, the final expression of Equation
(11) then becomes

Fd
e = �eSe

�E − �P

LPE
+ �eSe(grad�)e

old · (n − i�) (12)

where LPE stands for the distance between P and E, i� is the unit vector in the �-direction.
The different methods to approximate the value of � and its derivative at the cell face result in

different interpolation schemes. In the present study, the central difference scheme (CDS) is used.
Then the cell-face values of the variables are approximated as

�e ≈�e′ = �e�E + (1 − �e)�P for face e (13)

where the interpolation factor �e is defined as

�e = |re − rP|
|re − rP| + |rE − re| (14)

where re is the position vector.
Equation (13) is a second-order approximation at the location e′ on the straight line connecting

nodes P and E (Figure 1). If the cell-face centre e does not coincide with the location e′, a
correction term needs to be added in Equation (13) to restore the second-order accuracy, which
can be expressed as follows:

�e ≈�e′ + (grad�)e′ · (re − re′) (15)

To obtain the deferred derivatives at the cell face, they are calculated first at the control volume
centres and then interpolated to the cell faces. By using the Gauss’ theorem, the derivative at the
control volume (CV) centres can be approximated by the average value over the cell

(
��

�xi

)
P

≈
∫
�

��

�xi
d�

��
=
∫
S
�ii · n dS ≈∑

c
�cS

i
c, c= e, n,w, s (16)

Then the cell-centre derivatives can also be interpolated to the cell-face centres using the same
interpolation as that described by Equations (13)–(15).

The volume integral of the source term is

Q� =
∫

�
S� d�≈ S��� (17)

where � is the cell volume.
The momentum equations contain a contribution from the pressure. The volume integral of the

pressure gradient term in u-momentum equation can be obtained by

Qp
u, P =

∫
�

−
(

�p
�x

)
P
d�≈ −

(
	p

	x

)
P

�� (18)

Then the final discrete form of the u-momentum equation is

Au
PuP +∑

l
Au
l ul = Q∗

u, P −
(

	p

	x

)
P

�� (19)
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where P is the index of an arbitrary node, the index l denotes the four neighbouring points E,
W, S, N, the coefficients A�

P , A
�
E, A

�
W, A�

N, A
�
S are those of the resultant algebraic equations and

Q∗
u, P is the integral of the source term contributed by other forces.
In the present study, SIMPLEC method [21] is applied to couple the velocity and pressure. To

avoid oscillations in the pressure or velocity, the interpolation proposed by Rhie and Chow [22]
is adopted

ume = (um)e − ��e

(
1

Au
P +∑

l A
u
l

)
e

[(
	p

	x

)
e
−
(

	p

	x

)
e

]m−1

(20)

3.2. Porous medium region

Equations (3) and (4) recover the standard Navier–Stokes equations when the porosity approaches
unity. Thus, the discretizing procedure for porous medium is similar to that for the homogenous
fluid as the two sets of governing equations are similar in form. The discretized diffusion flux is
similar in form to Equation (12). The convective flux at a cell face is similar in form to Equation
(9) except for a small change

Fc
e =

∫
Se

�u

�
u · n dS ≈meue/�e (21)

The volume integral of the pressure gradient term (similar in form to Equation (18)) is

Qp∗
u, P =

∫
�

−
(

�(�p∗)
�x

)
P
d�≈ −

(
�

	p

	x

)
P

�� (22)

For the Darcy term in Equation (4), the volume integral can be expressed as

Qu
D =

∫
�

−
(��

K
u
)
p
d�=−

(��

K

)
p
�� · u p (23)

For the Forchheimer term, the volume integral is given by

Qu
F =

∫
�

−
(

��CF
√
u2 + v2√
K

u

)
p

d�= −
(

��CF
√
u2 + v2√
K

)
p

�� · u p (24)

It is convenient to treat the Darcy and Forchheimer terms as source terms. However, Equations
(23) and (24) indicate that, after integrating, both terms become a product of Darcy velocity
component and a coefficient. The two coefficients can be added into the coefficients of the algebraic
equation Au

p, which will accelerate the convergence rate.
The procedure to obtain the pressure correction equation is also similar to that for homogenous

fluid (Equation (20)), except for a small change

ume = (um)e − ��e

(
1

Au
P +∑

l A
u
l

)
e

[(
	(�p∗)

	x

)
e
−
(

	(�p∗)
	x

)
e

]m−1

(25)

3.3. Interface treatment

In some cases, structured grids are difficult, even impossible, to construct for complex geometries.
Therefore, in the present study, multi-block grids method is applied to provide a compromise
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′
′

∆ = −
∆ = −

= ∆ + ∆

Figure 2. Interface between two blocks with matching grids.

between the simplicity and wide variety of solvers available for structured grids and ability to
handle complex geometries that unstructured grids allow.

Figure 2 shows details of the interface between two different blocks. Two neighbouring control
volumes, lying in Block A and Block B, respectively, share the interface. The grids in two
neighbouring blocks match at the interface. Generally, there are three types of interfaces when the
block-structured grids method is employed to calculate the flow in the composite region: fluid–fluid
interface, porous medium–porous medium interface, and fluid–porous medium interface.

3.3.1. Interface between the same media. In this case, both blocks A and B (Figure 2) represent
the same media, either fluid or porous. The method proposed by Lilek et al. [23] is applied to treat
the block interface. A special data structure is designed to save the information at the interface,
which consists of: the indices of the left (L) and right (R) neighbouring cells, the surface vector
(pointing from L to R) and the coordinates of cell-surface centre (Figure 2). The interface cell
surface shared by two CVs is treated as a cell surface in the interior of the block. Thus, the
convective and diffusive terms at the block interface can be calculated in the same way as that
(Section 3.1) for the cell faces in the interior of the block. Then the contributions from the interface
cell faces, namely AL and AR, can be obtained.

Each interface cell face contributes to the source terms for the neighbouring CVs. Thus, if the
east side of a CV is a block interface, the coefficient AE (Equation (19)) is set to zero. However,
the algebraic equation at node L receives the contribution AR�R, while at node R, the contribution
is AL�L.

3.3.2. Interface between fluid and porous media. In this case, blocks A and B (Figure 2) represent
fluid and porous medium, respectively. The velocity vector at the interface is given by vinterface. It
can be written in either the x–y or n–t coordinate system as

vinterface = uex + vey = unn + ut t (26)

where u and v are the components of vinterface in the x and y directions while un and ut are the
vinterface components along n and t directions, respectively. And the component ut then can be
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written as

ut = uex · t + vey · t (27)

By combining Equations (5), (7) and (26)

�

�

�vinterface
�n

∣∣∣∣
porous

− �
�vinterface

�n

∣∣∣∣
fluid

= �
�√
K

ut t + �1�u
2
t t (28)

The unit vector (t) parallel to the interface (Figure 2) is calculated from

t= (xne − xse)ex + (yne − yse)ey√
(xne − xse)2 + (yne − yse)2

= �xeex + �yeey
le

(29)

By substituting the components of vinterface in the x and y directions, Equation (28) becomes

�

�

�u
�n

∣∣∣∣
porous

− �
�u
�n

∣∣∣∣
fluid

= �
�√
K

u�xe�xe + v�ye�xe
l2e

+ �1�
�xe(u�xe + v�ye)2

l3e
(30)

�

�

�v

�n

∣∣∣∣
porous

− �
�v

�n

∣∣∣∣
fluid

= �
�√
K

u�xe�ye + v�ye�ye
l2e

+ �1�
�ye(u�xe + v�ye)2

l3e
(31)

The derivatives at the interface are calculated from the values at auxiliary nodes L′ and R′; these
nodes lie at the intersection of the cell face normal n and straight lines connecting nodes L and
N or R and NR, respectively, as shown in Figure 2. The normal gradients at the interface can be
calculated by using the first-order difference approximation

�u
�n

∣∣∣∣
porous

= u|R′ − u|e
LeR′

,
�v

�n

∣∣∣∣
porous

= v|R′ − v|e
LeR′

(32)

�v

�n

∣∣∣∣
fluid

= v|e − v|L′

LL′e
,

�v

�n

∣∣∣∣
fluid

= v|e − v|L′

LL′e
(33)

The Cartesian velocity components at L′ and R′ can be calculated by using bilinear interpolation
or by using the gradient at the control volume centre

u|L′ = u|L + (grad u)L · L′L (34)

To obtain higher-order approximation of the derivatives, the velocity components at more auxil-
iary nodes may be needed. Alternatively, the shape functions may be used, which produces a kind
of combined finite element/finite volume method for calculating the higher-order approximations.

By using Equations (30)–(34) and explicitly calculating the terms at the right-hand sides of
Equations (30) and (31), the Cartesian velocity components u and v at the interface are obtained.
Then the convective fluxes at the interface can be calculated. The diffusive fluxes are calculated
from Equations (32) to (34). Then the coefficients AL and AR can be obtained.

To close the algebra equation system, the pressure at the interface must be determined. However,
the pressure gradient at the interface may not be continuous due to the rather large Darcy and
Forchheimer terms (Equation (4)), which may result in a rapid pressure drop at the porous side
[15]. This discontinuity of the pressure gradient becomes more severe at higher Reynolds number
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and lower Darcy number. Thus, it requires special treatment to estimate the interface pressure from
that of the vicinity at either side. A simplistic pressure estimation may give unrealistic, oscillatory
velocity profile. The coupling issue of pressure–velocity at the interface was described in a recent
paper by Betchen et al. [15] who proposed a solution that enables stable calculations. The pressure
is extrapolated in the fluid side to a location at a small distance near the interface. From this
location, a momentum balance is then used to estimate the interface pressure. This estimate is then
averaged with the pressure extrapolated from the porous side to obtain the interface pressure. In
the present paper, a less complex treatment was adopted. Extrapolations from the fluid and porous
sides give two different estimates of the interface pressure. The average of the two estimates is
used as the interface pressure. A small number of iterations is required for accuracy.

4. RESULTS AND DISCUSSION

4.1. Flow in a channel partially filled with a layer of a porous medium

The physical domain is shown schematically in Figure 3. It consists of a planar channel which is
horizontally divided into a homogenous fluid region with height H1 above and a fluid–saturated
porous region with height H2 below. The case of height ratio H2/H1 = 1 is considered.

The flow is assumed laminar and fully developed. The governing equations are simplified as
follows:

d2u

dy2
= 1

�

dp

dx
for the homogenous fluid (35)

d

dy

(
�

�

du

dy

)
= 1

�

d(�pf)

dx
+ �

K
u + �CF√

K
u2 for porous medium region (36)

with introducing the dimensionless variables

U = �u

GH2
1

and Y = y

H1

where

G =− dpf
dx

Figure 3. Schematic of flow in a channel partially filled with saturated porous medium.
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×

×
×

β ε ×

0.050

Figure 4. Effect of grid size on velocity profile.

Equations (35) and (36) can be rewritten as

d2U

dY 2
=− 1 for the homogenous fluid (37)

1

�

d2U

dY 2
=− 1 + 1

Da
U + FU 2 for porous medium region (38)

where Darcy number Da = K/H2
1 and Forchheimer number F =CF�GH4

1 /K
1
2 �2. The boundary

conditions are

U = 0 at Y = 1 and U = 0 Y =− H2/H1 (39)

1

�

dU

dY

∣∣∣∣
porous

− dU

dY

∣∣∣∣
fluid

= �√
Da

Uinterface at Y = 0 (40)

Following the proposal of Nield et al. [24], Equations (37)–(40) can be solved analytically as
shown in Appendix A. Both numerical and analytical solutions are presented for validation of the
present numerical implementation.

To ensure grid-independent solution and accurate resolution, a sufficiently fine mesh should be
used. For the fully developed flow (Figure 3), a mesh of 60 grids in the x direction is found to be
sufficient. In y direction, it is found that at least 40 grids are needed to obtain grid-independent
solution (Figure 4), which is consistent with the results of Silva and de Lemos [3] and Costa et al.
[4]. The interface velocities obtained with different grids are summarized in Table II. It confirms
that above 40 grids in y direction there is little change in the results. Also, the interface velocity
agrees with the analytical solution (of present study) to an accuracy of about 5%.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:1755–1775
DOI: 10.1002/fld



1766 P. YU ET AL.

Table II. Interface velocity with different grids in y direction.

Grids in y direction Interface velocity

40 0.0444
80 0.0434

160 0.0428
Analytical solution 0.0423
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Figure 5. Variation of the residual as a function of iterations; 60× 60 CVs grid.

Figure 5 shows the variation of the residual as a function of the number of the iterations. The
rate of convergence is fast and the residual drops to 10−6 within 600 iteration steps when a mesh
of 60× 60 CVs is used.

Figure 6 shows the u velocity profile under different flow conditions. It is seen that the numerical
and analytical results are in good agreement. The effect of the Darcy number (Da) on the u velocity
profile is presented in Figure 6(a) in which the Da varies from 10−3 to 5× 10−2 while the other
parameters are kept constant. Although in practical applications, Da may not go up to 10−2 [25],
nevertheless this range is also presented to show Da effect more clearly. From Figure 6(a), it is
seen that the u velocity decreases with the increase in Da. When Da is less than 10−3, the u
velocity in the porous medium is almost zero, except the region near the interface. The effect of
the porosity (�) on the u profile is shown in Figure 6(b). The u velocity should decrease as the
porosity decreases and the numerical and analytical results seem to show the trend. However, in
the porous medium region around −0.33<Y<− 0.62, the u velocity is slightly larger when the
porosity is smaller. This may be because the � chosen here is kept constant even though it should
vary with the variation of �. The Forchheimer number (F) does not have much effect on the
velocity distribution. The velocity decreases slightly when F increases from 1 to 100 as shown
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Figure 6. The u velocity profile under different flow conditions: (a) Darcy number effect; (b) porosity
effect; (c) Forchheimer number effect; and (d) jump parameter effect.

in Figure 6(c). The effect of the jump parameter (�) on the flow is shown in Figure 6(d), which
indicates that the u velocity increases noticeably as � increases.

4.2. Flow through a channel with a porous plug

The physical domain of the second problem is shown schematically in Figure 7, which is the
same as that by Gartling et al. [14], Costa et al. [4] and Betchen et al. [15]. In this problem
the flow passes through a planar channel with a porous plug under an imposed overall pressure
gradient. Different from the first problem, the governing dimensionless parameters are: Reynolds
number based on the mean velocity, Re= �UH/�, Darcy number Da = K/H2, the porosity �,
Forchheimer coefficient CF and jump parameters � and �1. For this case, Forchheimer coefficient
CF is evaluated as CF = 1.75/

√
150�5 [4, 15].
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∆ ∆ ∆

Figure 7. Schematic of flow in a channel with a porous plug.
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Figure 8. The velocity and pressure distributions along the centreline at: (a) Da = 10−2 and (b) Da = 10−3;
other parameters are Re= 1, �= 0.7, � = 0, �1 = 0, �x1 =�x3 = 3H and �x2 = 2H .

The numerical results for the case of Da = 10−2 and 10−3 are shown in Figure 8, where
the centreline u velocity and pressure along x direction are presented. The other parameters for
the flows illustrated in Figure 8 are Re= 1, �= 0.7, � = 0 and �1 = 0. The lengths are set to
�x1 =�x3 = 3H and �x2 = 2H .
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β = 0, β  = 0
β = 0.7, β  = 0
β = −0.7, β  = 0
β = 0, β   = 0.7
β = 0, β   = −0.7

Figure 9. Effect of the jump coefficients on the velocity distribution along the centreline at Da = 10−3,
Re= 1, �= 0.7, �x1 = �x3 = 3H and �x2 = 2H .

The numerical studies by Costa et al. [4] and Betchen et al. [15] have shown that a mesh of
(20+20+20)× 20 CVs is fine enough to obtain accurate results; the node density in x direction is
increasing towards the interfaces and the node distribution in y direction is uniform. In the present
study, the same mesh was used and the preliminary numerical tests confirmed that the solutions
are grid-independent.

Figure 8 shows that the velocity drops rapidly in the porous plug, across which there is a large
pressure drop, especially for the case with the low Darcy number. The flow field is predominantly
axial over most of the homogenous fluid and porous medium regions, but it is two-dimensional in
the region near the interface between the homogenous fluid and the porous medium. The present
results are in good agreement with those of Gartling et al. [14] and Betchen et al. [15]. The
trends of the present results are in general agreement with that of Costa et al. [4] except for slight
differences in the velocity magnitude in the porous medium.

The effect of the shear jump parameters � and �1 on the centreline velocity distribution is shown
in Figure 9. It is seen that the two parameters have very small effect as the dominant flow direction
is perpendicular to the interface.

Another case similar to Betchen et al. [15] is investigated in which the Darcy number is set
to Da = 10−2 and the channel segment lengths (Figure 7) are: �x1 = �x2 = 5H and �x3 = 50H .
In this case (Figure 10), the shear jump coefficient also has a negligible effect on the velocity
distribution along the centreline. The centreline velocity profile shows that the velocity remains
free of oscillation in the region near the two interfaces; this indicates that the present method is
capable of dealing with discontinuous pressure gradient at the interface.

Note that the present Reynolds number is limited to Re= 200 because above this value, velocity
oscillation was observed. For higher Reynolds number, the Forchheimer term becomes dominantly
large, which may cause severe pressure drop in the porous side. Thus, a severe discontinuity in
pressure gradient arises at the interface and the difficulty in estimating the interface pressure may
cause velocity oscillation there. The present method to estimate the interface pressure has been
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β = 0, β  = 0
β = 0.7, β  = 0   
β = 0, β  = 0.7

Figure 10. The velocity distribution along the centreline at Da = 10−2,
Re= 200, � = 0.7, �x1 =�x2 = 5H and �x3 = 50H .

Figure 11. Schematic of flow past a porous square cylinder.

explained in Section 3.3. The more complex method to estimate the interface pressure proposed
by Betchen et al. [15] is more robust for higher Reynolds number up to 1000.

4.3. Flow around a square porous cylinder

The above two problems concern internal flow problems with regions of a homogenous fluid and
a porous medium. To illustrate an external flow problem with complex geometry, the flow around
a square porous cylinder is considered. The computational domain is shown schematically in
Figure 11. The governing dimensionless parameters are the same as those of the porous plug
problem above: Reynolds number based on the mean velocity and the height of the cylinder,
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(a)

(b)

(c)

Figure 12. Streamlines of flow past a porous cylinder at different Darcy
numbers: (a) Da = 10−4; (b) Da = 10−3; and (c) Da = 10−2.

Re= �UH/�, Darcy number Da = K/H2, the porosity �, Forchheimer coefficient CF and jump
parameters � and �1.

The flow streamline for the flow around a square porous cylinder at different Da are presented
in Figure 12. In this case, Re is chosen as Re= 20 to ensure the steady and laminar flow. Three
different Da = 10−2, 10−3 and 10−4 are chosen and other parameters are kept constant namely,
� = 0.4, CF = 1, �= 0.7 and �1 = 0. The preliminary numerical test (data not shown) confirmed
that a mesh of 40× 40 CVs for the cylinder and a mesh of 160× 100 CVs for the external region
can provide grid-independent solutions. At smaller Da (= 10−4 in Figure 12(a)), that is the cylinder
permeability is small, very little fluid flows through the cylinder. Hence, the flow field resembles
that around a solid cylinder. When Da increases to 10−3 (Figure 12(b)), the vortex in the wake is
reduced as there is more bleed fluid. At higher Da (= 10−2 in Figure 12(c)), the large bleed flow
has prevented vortex formation.

Figure 13 shows the variation of recirculation length with the Darcy numbers, for Re= 20.
The recirculation length is defined as the streamwise distance, along the wake centreline, from the
cylinder rear to the re-attachment point. The recirculation length becomes longer with the decrease
in the Darcy number. However, the recirculation length approaches to a constant value at low Darcy
number as the porous cylinder tends to a solid one. The recirculation length at Da = 10−7 is about
1.32 (Figure 13), which is rather close to the value of around 1.34 for the solid cylinder [26].
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Figure 13. Variation of the recirculation length with the Darcy number.

β = 0, β = 0
β = 0.7, β = 0
β = −0.7, β = 0
β = 0, β = 0.7
β = 0, β = −0.7

Figure 14. The tangential velocity distribution along the interface: �= 0.4, CF = 1, Re= 20 and Da = 10−3.

Figure 14 shows the effects of the jump coefficients on the tangential velocity component at the
porous–fluid interface. There is not much effect for the rear interface as the tangential velocity there
is small. Elsewhere, the first coefficient � has a noticeable effect whereas the second coefficient �1
has very small effect. From Equation (5), the viscous term �(�/

√
K )ut is large if the permeability

K is small, that is the Darcy number is small. The inertial term �1�u
2
t may be important at high

Reynolds number; however, the external flow would become unsteady, which is out of the scope
of the present shear-jump modelling based on steady flow.
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5. CONCLUDING REMARKS

The main novelty of this paper is a numerical method for the theory developed by Ochoa-Tapia
and Whitaker [15] to model the momentum jump condition at the boundary between a porous
and fluid media, which includes both viscous and inertial jump parameters � and �1. A distinctive
feature of the present method is the use of multi-block grids which, together with body-fitted
grids, makes it more suitable for handling complex geometries. The shear stress jump condition
affects both the convective and diffusive fluxes. The normal stress condition, assumed continuous
at the interface, is also needed in order to close the two sets of equations. The general method was
applied to solve three flow configurations.

The numerical simulation of flow over a porous layer extends the work of Silva and de Lemos
[3] by using multi-block grid and including the diffusive flux term; the results compares well
with the analytical solution proposed by Nield et al. [24]. The numerical results for flow through
a porous plug exhibit slight difference in velocity in the porous medium, as compared with the
studies of Costa et al. [4]; however, there is good agreement with Gartling et al. [14] and Betchen
et al. [15]. The centreline velocity profile is free of oscillation in the region near the two interfaces,
which confirms that the present method is capable of dealing with discontinuous pressure gradient
there. The numerical simulation of flow past a porous square cylinder demonstrates the use of
multi-block grid for coupled fluid-porous flows involving complex geometries.

APPENDIX A

Integrating Equation (38) yields

1

�

(
d〈U 〉
dY

)2

= 2

3
F〈U 〉3 + 〈U 〉2

Da
− 2〈U 〉 + C (A1)

By using Equations (39) and (40), the constant C in Equation (A1) can be yielded

C = �

[
�√
Da

Ui +
(
1

2
−Ui

)]2
−
(
2

3
FU 3

i + U 2
i

Da
− 2Ui

)
(A2)

Since d〈U 〉/dY should be real and negative at this region, we can obtain

d〈U 〉
dY

=−
√

�

(
2

3
F〈U 〉3 + 〈U 〉2

Da
− 2〈U 〉 + C

)
(A3)

Then we can integrate Equation (A3) to obtain∫ Uinterface

0
Q(〈U 〉) d〈U 〉=−H2

H1
(A4)

where

Q(〈U 〉) =−
[
�

(
2

3
F〈U 〉3 + 〈U 〉2

Da
− 2〈U 〉 + C

)]−1/2
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In a similar fashion, we can obtain∫ Uinterface

〈U 〉
Q(〈U 〉) d〈U 〉= Y (A5)

Given the values of Da, F and �, the value of Uinterface is given in an inverse fashion by Equation
(A4). Pairs of values (Y,Ui ) determining the velocity profile can then be obtained from Equation
(A5). Then the integrals in Equation (A4) can be solved using Romberg’s numerical integration
method.
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